Tugas Pendahuluan Modul 4

Tugas pendahuluan Modul 4
RLC Seri dan RLC paralel


 1. Jelaskan prinsip kerja rangkaian RLC seri dan RLC Paralel!
Jawab:

RLC Seri

  • Komponen Resistor (R), Induktor (L), dan Kapasitor (C) disusun dalam satu jalur (seri).

  • Arus (I) yang mengalir sama melalui ketiga komponen.

  • Tegangan total (V total) adalah jumlah dari tegangan pada masing-masing komponen:

    Vtotal=VR+VL+VC​
  • Impedansi (Z) rangkaian tergantung pada frekuensi sinyal, dihitung sebagai:

    Z=R2+(XLXC)2

    di mana XL=ωLX_L = \omega L dan XC=1ωCX_C = \frac{1}{\omega C}.

RLC Paralel

  • Komponen R, L, dan C disusun sejajar (paralel).

  • Tegangan (V) pada masing-masing cabang sama, tetapi arus (I) yang mengalir di setiap komponen berbeda sesuai nilainya.

  • Dalam analisis, sering digunakan konduktansi dan admitansi (kebalikan dari impedansi).
    Total admitansi YY dihitung sebagai:

    Y=G2+(BLBC)2

    di mana G=1RG = \frac{1}{R}, BL=1XLB_L = \frac{1}{X_L}, dan BC=1XCB_C = \frac{1}{X_C}.

2. Jelaskan pengaruh harga reaktansi kapasitif terhadap sudut phasa dengan resistansi yang konstan!

Jawab:

Reaktansi kapasitif (XCX_C) adalah hambatan semu yang ditimbulkan oleh kapasitor terhadap arus bolak-balik (AC) dan nilainya bergantung pada frekuensi (XC=1ωCX_C = \frac{1}{\omega C}). Jika resistansi (RR) dalam suatu rangkaian dijaga tetap (konstan), perubahan nilai XCX_C akan memengaruhi sudut phasa (θ\theta) antara arus dan tegangan. Semakin besar nilai XCX_C (misalnya karena frekuensi yang makin rendah), maka sudut phasa akan semakin besar, yang berarti arus semakin mendahului tegangan karena sifat kapasitif semakin dominan. Sebaliknya, jika XCX_C semakin kecil (misalnya karena frekuensi yang makin tinggi), maka sudut phasa akan mengecil, mendekati nol, sehingga rangkaian semakin bersifat resistif murni, di mana arus dan tegangan hampir sefasa. Jadi, secara umum, kenaikan atau penurunan XCX_C secara langsung mengubah pergeseran sudut phasa di antara arus dan tegangan pada rangkaian dengan RR tetap.

3. Jelaskan apa itu resonansi dan frekuensi resonansi serta kenapa terjadi peristiwa resonansi, serta Jelaskan bagaimana perubahan frekuensi mempengaruhi impedansi dan arus di rangkaian RLC seri!

Jawab:

Resonansi dalam rangkaian RLC adalah kondisi khusus ketika reaktansi induktif (XLX_L) sama besar dengan reaktansi kapasitif (XCX_C), sehingga keduanya saling meniadakan dan meninggalkan hanya resistansi (RR) sebagai penghambat total arus. Pada kondisi ini, impedansi rangkaian menjadi minimum dan arus yang mengalir mencapai nilai maksimum. Frekuensi di mana resonansi terjadi disebut frekuensi resonansi (frf_r), yang secara matematis dihitung dengan rumus fr=12πLCf_r = \frac{1}{2\pi\sqrt{LC}}. Peristiwa resonansi terjadi karena pada frekuensi tertentu, energi yang disimpan bergantian antara medan magnet di induktor dan medan listrik di kapasitor, menciptakan kondisi di mana seluruh energi mengalir efisien tanpa hambatan reaktansi.

Jika frekuensi sinyal diubah, maka pengaruhnya terhadap impedansi dan arus sangat jelas. Pada frekuensi di bawah resonansi, XCX_C lebih besar daripada XLX_L, sehingga sifat rangkaian dominan kapasitif, menyebabkan impedansi naik dan arus turun. Pada frekuensi resonansi, karena XL=XCX_L = X_C, hambatan total hanya RR, sehingga impedansi minimum dan arus maksimum. Sementara itu, pada frekuensi di atas resonansi, XLX_L lebih besar daripada XCX_C, membuat rangkaian bersifat dominan induktif, lagi-lagi menyebabkan impedansi naik dan arus menurun. Dengan demikian, perubahan frekuensi memengaruhi keseimbangan reaktansi dan secara langsung mengubah besarnya impedansi serta arus dalam rangkaian RLC seri.

4. Jelaskan hubungan antara resistansi, kapasitansi, induktansi dan impedansi pada rangkaian RLC seri dan RLC paralel!

Jawab:

Pada rangkaian RLC seri, resistansi (RR), induktansi (LL), dan kapasitansi (CC) bersama-sama menentukan impedansi total (ZZ). Resistansi memberikan hambatan tetap terhadap arus, induktansi memberikan reaktansi induktif (XL=ωLX_L = \omega L) yang naik seiring frekuensi, sedangkan kapasitansi memberikan reaktansi kapasitif (XC=1/(ωC)X_C = 1/(\omega C)) yang turun seiring frekuensi. Impedansi total dirumuskan sebagai Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}.

Sementara pada rangkaian RLC paralel, ketiga komponen dipasang sejajar, sehingga arus bercabang. Hubungan antara komponen lebih mudah dianalisis menggunakan admitansi (YY), yaitu kebalikan dari impedansi, dengan Y=G2+(BLBC)2Y = \sqrt{G^2 + (B_L - B_C)^2}, di mana G=1/RG = 1/R, BL=1/XLB_L = 1/X_L, dan BC=1/XCB_C = 1/X_C. Jadi, baik pada rangkaian seri maupun paralel, resistansi, induktansi, dan kapasitansi saling memengaruhi nilai akhir impedansi atau admitansi, yang kemudian menentukan besarnya arus dalam rangkaian.

5. Pada rangkaian RLC seri, XL = 40 , XC = 70 dan R = 40 . Hitung reaktansi (X) dan impedansi (Z) dari rangkaian.
Jawab:

Diketahui:

  • XL=40ΩX_L = 40 \, \Omega

  • XC=70ΩX_C = 70 \, \Omega

  • R=40ΩR = 40 \, \Omega

Hitung reaktansi total XX

Reaktansi total pada rangkaian seri adalah selisih:

X=XLXC=4070=30ΩX = X_L - X_C = 40 - 70 = -30 \, \Omega

Tanda negatif menunjukkan sifat dominan kapasitif.

Hitung impedansi total ZZ

Impedansi dirumuskan:

Z=R2+(X)2Z = \sqrt{R^2 + (X)^2} Z=402+(30)2=1600+900=2500=50ΩZ = \sqrt{40^2 + (-30)^2} = \sqrt{1600 + 900} = \sqrt{2500} = 50 \, \Omega

Hasil akhir:

  • Reaktansi total XX = 30Ω-30 \, \Omega (kapasitif)

  • Impedansi total ZZ = 50Ω




download tugas pendahuluan disini

Komentar

Postingan populer dari blog ini